Closed-Form Conditions of bifurcation Points for General Differential Equations
نویسنده
چکیده
This note presents closed-form formulas for determining the critical points of general ndimensional differential equations. The formulas do not require commutating the eigenvalues of the Jacobian of a system. Based on the Hurwitz criterion, explicit necessary and sufficient conditions are obtained. Particular attention is focused on Hopf and double Hopf bifurcations. A model of induction machine is presented to show the application of the results.
منابع مشابه
Free Vibration Analysis of a Sloping-frame: Closed-form Solution versus Finite Element Solution and Modification of the Characteristic Matrices (TECHNICAL NOTE)
This article deals with the free vibration analysis and determination of the seismic parameters of a sloping-frame which consists of three members; a horizontal, a vertical, and an inclined member. The both ends of the frame are clamped, and the members are rigidly connected at joint points. The individual members of the frame are assumed to be governed by the transverse vibration theory of an ...
متن کاملA Simple and Systematic Approach for Implementing Boundary Conditions in the Differential Quadrature Free and Forced Vibration Analysis of Beams and Rectangular Plates
This paper presents a simple and systematic way for imposing boundary conditions in the differential quadrature free and forced vibration analysis of beams and rectangular plates. First, the Dirichlet- and Neumann-type boundary conditions of the beam (or plate) are expressed as differential quadrature analog equations at the grid points on or near the boundaries. Then, similar to CBCGE (direct ...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملNonlinear Dynamics of the Rotational Slender Axially Moving String with Simply Supported Conditions
In this research, dynamic analysis of the rotational slender axially moving string is investigated. String assumed as Euler Bernoulli beam. The axial motion of the string, gyroscopic force and mass eccentricity were considered in the study. Equations of motion are derived using Hamilton’s principle, resulting in two partial differential equations for the transverse motions. The equations are ch...
متن کاملBifurcation of Periodic Delay Differential Equations at Points of 1:4 Resonance
BIFURCATION OF PERIODIC DELAY DIFFERENTIAL EQUATIONS AT POINTS OF 1:4 RESONANCE ∗ G. RÖST † Abstract. The time-periodic scalar delay differential equation ẋ(t) = γf(t, x(t − 1)) is considered, which leads to a resonant bifurcation of the equilibrium at critical values of the parameter. Using Floquet theory, spectral projection and center manifold reduction, we give conditions for the stability ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 15 شماره
صفحات -
تاریخ انتشار 2005